
Published as a conference paper at ICLR 2023

NEURAL ARCHITECTURE DESIGN AND ROBUSTNESS:
A DATASET

Steffen Jung1,2,*, Jovita Lukasik1,*, Margret Keuper1,2

1 Max Planck Institute for Informatics, Saarland Informatics Campus
{steffen.jung,jlukasik,keuper}@mpi-inf.mpg.de
2 University of Siegen

ABSTRACT

Deep learning models have proven to be successful in a wide range of machine
learning tasks. Yet, they are often highly sensitive to perturbations on the input
data which can lead to incorrect decisions with high confidence, hampering their
deployment for practical use-cases. Thus, finding architectures that are (more)
robust against perturbations has received much attention in recent years. Just
like the search for well-performing architectures in terms of clean accuracy, this
usually involves a tedious trial-and-error process with one additional challenge:
the evaluation of a network’s robustness is significantly more expensive than its
evaluation for clean accuracy. Thus, the aim of this paper is to facilitate better
streamlined research on architectural design choices with respect to their impact
on robustness as well as, for example, the evaluation of surrogate measures for
robustness. We therefore borrow one of the most commonly considered search
spaces for neural architecture search for image classification, NAS-Bench-201,
which contains a manageable size of 6 466 non-isomorphic network designs. We
evaluate all these networks on a range of common adversarial attacks and corruption
types and introduce a database on neural architecture design and robustness evalua-
tions. We further present three exemplary use cases of this dataset, in which we
(i) benchmark robustness measurements based on Jacobian and Hessian matrices
for their robustness predictability, (ii) perform neural architecture search on robust
accuracies, and (iii) provide an initial analysis of how architectural design choices
affect robustness. We find that carefully crafting the topology of a network can
have substantial impact on its robustness, where networks with the same parameter
count range in mean adversarial robust accuracy from 20%− 41%. Code and data
is available at http://robustness.vision.

1 INTRODUCTION

One factor in the ever-improving performance of deep neural networks is based on innovations in
architecture design. The starting point was the unprecedented result of AlexNet (Krizhevsky et al.,
2012) on the visual recognition challenge ImageNet (Deng et al., 2009). Since then, the goal is to
find better performing models, surpassing human performance. However, human design of new better
performing architectures requires a huge amount of trial-and-error and a good intuition, such that the
automated search for new architectures (NAS) receives rapid and growing interest (Zoph & Le, 2017;
Real et al., 2017; Ying et al., 2019; Dong & Yang, 2020). The release of tabular benchmarks (Ying
et al., 2019; Dong & Yang, 2020) led to a research change; new NAS methods can be evaluated in a
transparent and reproducible manner for better comparison.

The rapid growth in NAS research with the main focus on finding new architecture designs with
ever-better performance is recently accompanied by the search for architectures that are robust against
adversarial attacks and corruptions. This is important, since image classification networks can be
easily fooled by adversarial attacks crafted by already light perturbations on the image data, which
are invisible for humans. This leads to false predictions of the neural network with high confidence.

Robustness in NAS research combines the objective of high performing and robust architectures
(Dong & Yang, 2019; Devaguptapu et al., 2021; Dong et al., 2020a; Hosseini et al., 2021; Mok

1

http://robustness.vision

Published as a conference paper at ICLR 2023

et al., 2021). However, there was no attempt so far to evaluate a full search space on robustness,
but rather architectures in the wild. This paper is a first step towards closing this gap. We are
the first to introduce a robustness dataset based on evaluating a complete NAS search space, such
as to allow benchmarking neural architecture search approaches for the robustness of the found
architectures. This will facilitate better streamlined research on neural architecture design choices
and their robustness. We evaluate all 6 466 unique pretrained architectures from the NAS-Bench-201
benchmark (Dong & Yang, 2020) on common adversarial attacks (Goodfellow et al., 2015; Kurakin
et al., 2017; Croce & Hein, 2020) and corruption types (Hendrycks & Dietterich, 2019). We thereby
follow the argumentation in NAS research that employing one common training scheme for the
entire search space will allow for comparability between architectures. Having the combination of
pretrained models and the evaluation results in our dataset at hand, we further provide the evaluation
of common training-free robustness measurements, such as the Frobenius norm of the Jacobian matrix
(Hoffman et al., 2019) and the largest eigenvalue of the Hessian matrix (Zhao et al., 2020), on the full
architecture search space and use these measurements as a method to find the supposedly most robust
architecture. To prove the promise of our dataset to promote research in neural architecture search for
robust models we perform several common NAS algorithms on the clean as well as on the robust
accuracy of different image classification tasks. Additionally, we conduct a first analysis of how
certain architectural design choices affect robustness with the potential of doubling the robustness of
networks with the same number of parameters. This is only possible, since we evaluate the whole
search space of NAS-Bench-201 (Dong & Yang, 2020), enabling us to investigate the effect of small
architectural changes. To our knowledge we are the first paper to introduce a robustness dataset
covering a full (widely used) search space allowing to track the outcome of fine-grained architectural
changes. In summary we make the following contributions:

• We present the first robustness dataset evaluating a complete NAS architectural search space
on robustness.

• We present different use cases for this dataset; from training-free measurements for robust-
ness to neural architecture search.

• Lastly, our dataset shows that a model’s robustness against corruptions and adversarial at-
tacks is highly sensitive towards the architectural design, and carefully crafting architectures
can substantially improve their robustness.

2 RELATED WORK

Common Corruptions While neural architectures achieve results in image classification that super-
sede human performance (He et al., 2015), common corruptions such as Gaussian noise or blur can
cause this performance to degrade substantially (Dodge & Karam, 2017). For this reason, Hendrycks
& Dietterich (2019) propose a benchmark that enables researchers to evaluate their network design
on several common corruption types.

Adversarial Attacks Szegedy et al. (2014) showed that image classification networks can be fooled
by crafting image perturbations, so called adversarial attacks, that maximize the networks’ prediction
towards a class different to the image label. Surprisingly, these perturbations can be small enough
such that they are not visible to the human eye. One of the first adversarial attacks, called fast
gradient sign method (FGSM) (Goodfellow et al., 2015), tries to flip the label of an image in a single
perturbation step of limited size. This is achieved by maximizing the loss of the network and requires
access to its gradients. Later gradient-based methods, like projected gradient descent (PGD) (Kurakin
et al., 2017), iteratively perturb the image in multiple gradient steps. To evaluate robustness in a
structured manner, Croce & Hein (2020) propose an ensemble of different attacks, including an
adaptive version of PGD (APGD) (Croce & Hein, 2020) and a blackbox attack called Square Attack
(Andriushchenko et al., 2020) that has no access to network gradients. Croce et al. (2021) conclude
the next step in robustness research by providing an adversarial robustness benchmark, RobustBench,
tracking state-of-the-art models in adversarial robustness.

NAS Neural Architecture Search (NAS) is an optimization problem with the objective to find an
optimal combination of operations in a predefined, constrained search space. Early NAS approaches
differ by their search strategy within the constraint search space. Common NAS strategies are
evolutionary methods (Real et al., 2017; 2019), reinforcement learning (RL) (Zoph & Le, 2017; Li
et al., 2018), random search (Bergstra & Bengio, 2012; Li & Talwalkar, 2019), local search (White

2

Published as a conference paper at ICLR 2023

image conv residual
block cell x N residual

block cell x N global
avg poolcell x N

in

1

2 out

Cell Operations
1x1 convolution
3x3 convolution
3x3 avg. pooling

skip connect
zeroize

1x1
3x3
avg

1

2

3

4

5

6

Figure 1: (top) Macro architecture. Gray highlighted cells differ between architectures, while the
other components stay fixed. (bottom) Cell structure and the set of possible, predefined operations.
(Figure adapted from (Dong & Yang, 2020))

et al., 2021b), and Bayesian optimization (BO) (Kandasamy et al., 2018; Ru et al., 2021; White
et al., 2021a). To further improve the search strategy efficiency, the research focus shift from discrete
optimization methods to faster differentiable search methods, using weight-sharing approaches (Pham
et al., 2018; Liu et al., 2019; Bender et al., 2018; Cai et al., 2019; Xie et al., 2019b; Zela et al., 2020).
In order to compare NAS approaches properly, NAS benchmarks were introduced and opened the
path for fast evaluations. The tabular benchmarks NAS-Bench-101 (Ying et al., 2019) and NAS-
Bench-201(Dong & Yang, 2020) provide exhaustive evaluations of performances and metrics within
their predefined search space on image classification tasks. TransNAS-Bench-101 (Duan et al., 2021)
introduces a benchmark containing performance and metric information across different vision tasks.
We will give a more detailed overview about the NAS-Bench-201(Dong & Yang, 2020) benchmark
in subsection 3.1.

Robustness in NAS With the increasing interest in NAS in general, the aspect of robustness of the
optimized architectures has become more and more relevant. Devaguptapu et al. (2021) provide a
large-scale study that investigates how robust architectures found by several NAS methods, such
as (Liu et al., 2019; Cai et al., 2019; Xu et al., 2020), are against several adversarial attacks. They
show that these architectures are vulnerable to various different adversarial attacks. Guo et al. (2020)
first search directly for a robust neural architecture using one-shot NAS and discover a family of
robust architectures. Dong et al. (2020a) constrain the architectures’ parameters within a supernet to
reduce the Lipschitz constant and therefore increase the resulting networks’ robustness. Few prior
works such as (Carlini et al., 2019; Xie et al., 2019a; Pang et al., 2021; Xie et al., 2020) propose
more in-depth statistical analyses. In particular, Su et al. (2018) evaluate 18 ImageNet models with
respect to their adversarial robustness. Ling et al. (2019); Dong et al. (2020b) provide platforms to
evaluate adversarial attacks. Recently a new line of differentiable robust NAS arose, namely including
differentiable network measurements to the one-shot loss target to increase the robustness (Hosseini
et al., 2021; Mok et al., 2021). Hosseini et al. (2021) define two differentiable metrics to measure
the robustness of the architecture, certified lower bound and Jacobian norm bound, and searches
for architectures by maximizing these metrics, respectively. Mok et al. (2021) propose a search
algorithm using the intrinsic robustness of a neural network being represented by the smoothness of
the network’s input loss landscape, i.e. the Hessian matrix.

3 DATASET GENERATION

3.1 ARCHITECTURES IN NAS-BENCH-201

NAS-Bench-201 (Dong & Yang, 2020) is a cell-based architecture search space. Each cell has in
total 4 nodes and 6 edges. The nodes in this search space correspond to the architecture’s feature
maps and the edges represent the architectures operation, which are chosen from the operation set
O = {1× 1 conv. , 3× 3 conv. , 3× 3 avg. pooling , skip , zero} (see Figure 1). This search space
contains in total 56 = 15 625 architectures, from which only 6 466 are unique, since the operations
skip and zero can cause isomorphic cells (see Figure 8, appendix), where the latter operation zero
stands for dropping the edge. Each architecture is trained on three different image datasets for
200 epochs: CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009) and ImageNet16-120
(Chrabaszcz et al., 2017). For our evaluations, we consider all unique architectures in the search

3

Published as a conference paper at ICLR 2023

0 0.1 0.5 1 2 3 4 5 6 7 8 255
epsilon

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 FGSM accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 PGD accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 AA_APGD-CE accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 AA_SQUARE accuracies

Figure 2: Accuracy boxplots over all 6 466 unique architectures in NAS-Bench-201 for different
adversarial attacks (FGSM (Goodfellow et al., 2015), PGD (Kurakin et al., 2017), APGD (Croce &
Hein, 2020), Square (Andriushchenko et al., 2020)) and perturbation magnitude values ϵ, evaluated
on CIFAR-10. Red line corresponds to guessing. The large spread indicates towards architectural
influence on robust performance.

cle
an

, e
=0

fg
sm

, e
=0

.1
fg

sm
, e

=0
.5

fg
sm

, e
=1

fg
sm

, e
=2

fg
sm

, e
=3

fg
sm

, e
=4

fg
sm

, e
=5

fg
sm

, e
=6

fg
sm

, e
=7

fg
sm

, e
=8

fg
sm

, e
=2

55
pg

d,
 e

=0
.1

pg
d,

 e
=0

.5
pg

d,
 e

=1
pg

d,
 e

=2
pg

d,
 e

=3
pg

d,
 e

=4
pg

d,
 e

=8
aa

_a
pg

d-
ce

, e
=0

.1
aa

_a
pg

d-
ce

, e
=0

.5
aa

_a
pg

d-
ce

, e
=1

aa
_a

pg
d-

ce
, e

=2
aa

_a
pg

d-
ce

, e
=3

aa
_a

pg
d-

ce
, e

=4
aa

_a
pg

d-
ce

, e
=8

aa
_s

qu
ar

e,
 e

=0
.1

aa
_s

qu
ar

e,
 e

=0
.5

aa
_s

qu
ar

e,
 e

=1
aa

_s
qu

ar
e,

 e
=2

aa
_s

qu
ar

e,
 e

=3
aa

_s
qu

ar
e,

 e
=4

aa
_s

qu
ar

e,
 e

=8

clean, e=0
fgsm, e=0.1
fgsm, e=0.5

fgsm, e=1
fgsm, e=2
fgsm, e=3
fgsm, e=4
fgsm, e=5
fgsm, e=6
fgsm, e=7
fgsm, e=8

fgsm, e=255
pgd, e=0.1
pgd, e=0.5

pgd, e=1
pgd, e=2
pgd, e=3
pgd, e=4
pgd, e=8

aa_apgd-ce, e=0.1
aa_apgd-ce, e=0.5

aa_apgd-ce, e=1
aa_apgd-ce, e=2
aa_apgd-ce, e=3
aa_apgd-ce, e=4
aa_apgd-ce, e=8
aa_square, e=0.1
aa_square, e=0.5

aa_square, e=1
aa_square, e=2
aa_square, e=3
aa_square, e=4
aa_square, e=8 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3: Kendall rank correlation coefficient between clean accuracies and robust accuracies on
different attacks and magnitude values ϵ on CIFAR-10 for all unique architectures in NAS-Bench-201.
There seem to be architectural distinctions for susceptibility to different attacks.

space and test splits of the corresponding datasets. Hence, we evaluate 3 · 6 466 = 19 398 pretrained
networks in total. In the following, we describe which evaluations we collect.

3.2 ROBUSTNESS TO ADVERSARIAL ATTACKS

We start by collecting evaluations on different adversarial attacks, namely FGSM, PGD, APGD, and
Square Attack. Following, we describe each attack and the collection of their results in more detail.

FGSM FGSM (Goodfellow et al., 2015) finds adversarial examples via

x̃ = x+ ϵsign(∆xJ(θ, x, y)), (1)

4

Published as a conference paper at ICLR 2023

where x̃ is the adversarial example, x is the input image, y the corresponding label, ϵ the magnitude
of the perturbation, and θ the network parameters. J(θ, x, y) is the loss function used to train the
attacked network. In the case of architectures trained for NAS-Bench-201, this is cross entropy
(CE). Since attacks via FGSM can be evaluated fairly efficiently, we evaluate all architectures
for ϵ ∈ EFGSM = {.1, .5, 1, 2, . . . , 8, 255}/255, so for a total of |EFGSM | = 11 times for each
architecture. We use Foolbox (Rauber et al., 2017) to perform the attacks, and collect (a) accuracy, (b)
average prediction confidences, as well as (c) confusion matrices for each network and ϵ combination.

PGD While FGSM perturbs the image in a single step of size ϵ, PGD (Kurakin et al., 2017) iteratively
perturbs the image via

x̃n+1 = clipϵ,x(x̃n − αsign(∆xJ(θ, x̃n, ỹ))), x̃0 = x, (2)

where ỹ is the least likely predicted class of the network, and clipϵ,x(·) is a function clipping
to range [x − ϵ, x + ϵ]. Due to its iterative nature, PGD is more efficient in finding adversarial
examples, but requires more computation time. Therefore, we find it sufficient to evaluate PGD for
ϵ ∈ EPGD = {.1, .5, 1, 2, 3, 4, 8}/255, so for a total of |EPGD| = 7 times for each architecture.
As for FGSM, we use Foolbox (Rauber et al., 2017) to perform the attacks using their L∞ PGD
implementation and keep the default settings, which are α = 0.01/0.3 for 40 attack iterations. We
collect (a) accuracy, (b) average prediction confidences, and (c) confusion matrices for each network
and ϵ combination.

APGD AutoAttack (Croce & Hein, 2020) offers an adaptive version of PGD that reduces its step size
over time without the need for hyperparameters. We perform this attack using the L∞ implementation
provided by (Croce & Hein, 2020) on CE and choose EAPGD = EPGD. We kept the default number
of attack iterations that is 100. We collect (a) accuracy, (b) average prediction confidences, and (c)
confusion matrices for each network and ϵ combination.

Square Attack In contrast to the before-mentioned attacks, Square Attack is a blackbox attack that
has no access to the networks’ gradients. It solves the following optimization problem using random
search:

min
x̃
{fy,θ(x̃)−maxk ̸=yfk,θ(x̃)}, s.t. ∥x̃− x∥p ≤ ϵ, (3)

where fk,θ(·) are the network predictions for class k given an image. We perform this attack using
the L∞ implementation provided by (Croce & Hein, 2020) and choose ESquare = EPGD. We kept
the default number of search iterations at 5 000. We collect (a) accuracy, (b) average prediction
confidences, and (c) confusion matrices for each network and ϵ combination.

Summary Figure 2 shows aggregated evaluation results on the before-mentioned attacks on
CIFAR-10 w.r.t. accuracy. Growing gaps between mean and max accuracies indicate that the ar-
chitecture has an impact on robust performances. Figure 3 depicts the correlation of ranking all
architectures based on different attack scenarios. While there is larger correlation within the same
adversarial attack and different values of ϵ, there seem to be architectural distinctions for susceptibility
to different attacks.

3.3 ROBUSTNESS TO COMMON CORRUPTIONS

To evaluate all unique NAS-Bench-201 Dong & Yang (2020) architectures on common corruptions,
we evaluate them on the benchmark data provided by (Hendrycks & Dietterich, 2019). Two datasets
are available: CIFAR10-C, which is a corrupted version of CIFAR-10 and CIFAR-100-C, which
is a corrupted version of CIFAR-100. Both datasets are perturbed with a total of 15 corruptions
at 5 severity levels (see Figure 18 in the Appendix for an example). The training procedure of
NAS-Bench-201 only augments the training data with random flipping and random cropping. Hence,
no influence should be expected of the training augmentation pipeline on the performance of the
networks to those corruptions. We evaluate each of the 15 · 5 = 75 datasets individually for each
network and collect (a) accuracy, (b) average prediction confidences, and (c) confusion matrices.

Summary Figure 4 depicts mean accuracies for different corruptions at increasing severity levels.
Similar to Figure 2, a growing gap between mean and max accuracies for most of the corruptions can
be observed, which indicates towards architectural influences on robustness to common corruptions.
Figure 5 depicts the ranking correlation for all architectures between clean and corrupted accuracies.
Ranking architectures based on accuracy on different kinds of corruption is mostly uncorrelated. This
indicates a high diversity of sensitivity to different kinds of corruption based on architectural design.

5

Published as a conference paper at ICLR 2023

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 brightness accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 contrast accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 defocus_blur accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 elastic_transform accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 fog accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 frost accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 gaussian_noise accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 glass_blur accuracy

Figure 4: Accuracy boxplots over all unique architectures in NAS-Bench-201 for different corruption
types at different severity levels, evaluated on CIFAR-10-C. Red line corresponds to guessing. All
corruptions can be found in Figure 21. The large spread indicates towards architectural influence on
robust performance.

cle
an

br
ig

ht
ne

ss
, s

=3
co

nt
ra

st
, s

=3
de

fo
cu

s_
bl

ur
, s

=3
el

as
tic

_t
ra

ns
fo

rm
, s

=3
fo

g,
 s=

3
fro

st
, s

=3
ga

us
sia

n_
no

ise
, s

=3
gl

as
s_

bl
ur

, s
=3

im
pu

lse
_n

oi
se

, s
=3

jp
eg

_c
om

pr
es

sio
n,

 s=
3

m
ot

io
n_

bl
ur

, s
=3

pi
xe

la
te

, s
=3

sh
ot

_n
oi

se
, s

=3
sn

ow
, s

=3
zo

om
_b

lu
r,

s=
3

clean
brightness, s=3

contrast, s=3
defocus_blur, s=3

elastic_transform, s=3
fog, s=3

frost, s=3
gaussian_noise, s=3

glass_blur, s=3
impulse_noise, s=3

jpeg_compression, s=3
motion_blur, s=3

pixelate, s=3
shot_noise, s=3

snow, s=3
zoom_blur, s=3 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5: Kendall rank correlation coefficient between clean accuracies and accuracies on different
corruptions at severity level 3 on CIFAR-10-C for all unique architectures in NAS-Bench-201. The
mostly uncorrelated ranking indicates towards high diversity of sensitivity to different kinds of
corruption based on architectural design.

4 USE CASES

4.1 TRAINING-FREE MEASUREMENTS FOR ROBUSTNESS

Recently, a new research focus in differentiable NAS shifted towards finding not only high-scoring
architectures but also finding adversarially robust architectures against several adversarial attacks
(Hosseini et al., 2021; Mok et al., 2021) using training characteristics of neural networks. On the
one hand, (Hosseini et al., 2021) uses Jacobian-based differentiable metrics to measure robustness.
On the other hand, (Mok et al., 2021) improves the search for robust architectures by including the

6

Published as a conference paper at ICLR 2023

cle
an

, e
=0

fg
sm

, e
=0

.1
fg

sm
, e

=0
.5

fg
sm

, e
=1

fg
sm

, e
=2

fg
sm

, e
=3

fg
sm

, e
=4

fg
sm

, e
=5

fg
sm

, e
=6

fg
sm

, e
=7

fg
sm

, e
=8

fg
sm

, e
=2

55
pg

d,
 e

=0
.1

pg
d,

 e
=0

.5
pg

d,
 e

=1
pg

d,
 e

=2
pg

d,
 e

=3
pg

d,
 e

=4
pg

d,
 e

=8
aa

_a
pg

d-
ce

, e
=0

.1
aa

_a
pg

d-
ce

, e
=0

.5
aa

_a
pg

d-
ce

, e
=1

aa
_a

pg
d-

ce
, e

=2
aa

_a
pg

d-
ce

, e
=3

aa
_a

pg
d-

ce
, e

=4
aa

_a
pg

d-
ce

, e
=8

aa
_s

qu
ar

e,
 e

=0
.1

aa
_s

qu
ar

e,
 e

=0
.5

aa
_s

qu
ar

e,
 e

=1
aa

_s
qu

ar
e,

 e
=2

aa
_s

qu
ar

e,
 e

=3
aa

_s
qu

ar
e,

 e
=4

aa
_s

qu
ar

e,
 e

=8

hessian_test, pretrained
hessian_test, random

hessian_train, pretrained
hessian_train, random

jacobian_test, pretrained
jacobian_test, random

jacobian_train, pretrained
jacobian_train, random 1.0

0.5

0.0

0.5

1.0

cle
an

, s
=3

br
ig

ht
ne

ss
, s

=3
co

nt
ra

st
, s

=3
de

fo
cu

s_
bl

ur
, s

=3
el

as
tic

_t
ra

ns
fo

rm
, s

=3
fo

g,
 s=

3
fro

st
, s

=3
ga

us
sia

n_
no

ise
, s

=3
gl

as
s_

bl
ur

, s
=3

im
pu

lse
_n

oi
se

, s
=3

jp
eg

_c
om

pr
es

sio
n,

 s=
3

m
ot

io
n_

bl
ur

, s
=3

pi
xe

la
te

, s
=3

sh
ot

_n
oi

se
, s

=3
sn

ow
, s

=3
zo

om
_b

lu
r,

s=
3

hessian_test, pretrained
hessian_test, random

hessian_train, pretrained
hessian_train, random

jacobian_test, pretrained
jacobian_test, random

jacobian_train, pretrained
jacobian_train, random 1.0

0.5

0.0

0.5

1.0

Figure 6: Kendall rank correlation coefficient between Jacobian- and Hessian-based robustness
measurements computed on all unique NAS-Bench-201 architectures to corresponding rankings given
by (top) different adversarial attacks and (bottom) different common corruptions. Measurements and
accuracies are computed on CIFAR-10 / CIFAR-10-C. Measurements are computed on randomly
initialized and pretrained networks contained in NAS-Bench-201. Jacobian-based and Hessian-based
measurements correlate well for smaller ϵ values, but not for larger ϵ values.

smoothness of the loss landscape of a neural network. In this section, we evaluate these training-free
gradient-based measurements with our dataset.

Background: Jacobian To improve the robustness of neural architectures, (Hoffman et al., 2019)
introduced an efficient Jacobian regularization method with the goal to minimize the network’s output
change in case of perturbed input data, by minimizing the Frobenius norm of the network’s Jacobian
matrix, J . The Frobenius norm is defined as ∥J(x)∥F =

√∑
ϕ,c |Jϕ,c(x)|. Let fθ : RD → RC be a

neural network with weights denoted by θ and let x ∈ RD be the input data and z ∈ RC be the output
score. Let x̃ = x+ ε be a perturbed input, with ε ∈ RD being a perturbation vector. The output of
the neural network shifts then to fθ,c(x+ ε)− fθ,c(x). The input-output Jacobian matrix can be used
as a measurement for the networks stability against input perturbations (Hoffman et al., 2019):

fθ,c(x+ ε)− fθ,c(x) ≈
D∑

d=1

εd ·
∂fθ,c;d
∂xd

(x) =

D∑
d=1

Jθ,c;d(x) · εd, (4)

according to Taylor-expansion. From Equation 4, we can directly see that the larger the Jacobian
components, the larger is the output change and thus the more unstable is the neural network against
perturbed input data. In order to increase the stability of the network, (Hoffman et al., 2019)
proposes to decrease the Jacobian components by minimizing the square of the Frobenius norm of
the Jacobian. Following (Hosseini et al., 2021), we use the efficient algorithm presented in (Hoffman
et al., 2019) to compute the Frobenius norm based on random projection for each neural network in
the NAS-Bench-201 (Dong & Yang, 2020) benchmark.

Benchmarking Results: Jacobian The smaller the Frobenius norm of the Jacobian of a network, the
more robust the network is supposed to be. Our dataset allows for a direct evaluation of this statement
on all 6 466 unique architectures. We use 10 mini-batches of size 256 of the training as well as test
dataset for both randomly initialized and pretrained networks and compute the mean Frobenius norm.
The results in terms of ranking correlation to adversarial robustness is shown in Figure 6 (top), and in
terms of ranking correlation to robustness towards common corruptions in Figure 6 (bottom). We can
observe that the Jacobian-based measurement correlates well with rankings after attacks by FGSM

7

Published as a conference paper at ICLR 2023

and smaller ϵ values for other attacks. However, this is not true anymore when ϵ increases, especially
in the case of APGD.

Background: Hessian Zhao et al. (2020) investigate the loss landscape of a regular neural network
and robust neural network against adversarial attacks. Let L(fθ(x)) denote the standard classification
loss of a neural network fθ for clean input data x ∈ RD and L(fθ(x+ ε)) be the adversarial loss with
perturbed input data x+ ε, ε ∈ RD. Zhao et al. (2020) provide theoretical justification that the latter
adversarial loss is highly correlated with the largest eigenvalue of the input Hessian matrix H(x) of
the clean input data x, denoted by λmax. Therefore the eigenspectrum of the Hessian matrix of the
regular network can be used for quantifying the robustness: large Hessian spectrum implies a sharp
minimum resulting in a more vulnerable neural network against adversarial attacks. Whereas in the
case of a neural network with small Hessian spectrum, implying a flat minimum, more perturbation
on the input is needed to leave the minimum. We make use of (Chatzimichailidis et al., 2019) to
compute the largest eigenvalue λmax for each neural network in the NAS-Bench-201 (Dong & Yang,
2020) benchmark.

Benchmarking Results: Hessian For this measurement, we calculate the largest eigenvalues of
all unique architectures using the Hessian approximation in (Chatzimichailidis et al., 2019). We
use 10 mini-batches of size 256 of the training as well as test dataset for both randomly initialized
and pretrained networks and compute the mean largest eigenvalue. These results are also shown in
Figure 6. We can observe that the Hessian-based measurement behaves similarly to the Jacobian-based
measurement.

Table 1: Neural Architecture Search on the clean test accuracy and the FGSM (ϵ = 1) robust test
accuracy for different state of the art methods on CIFAR-10 in the NAS-Bench-201 (Dong & Yang,
2020) search space (mean over 100 runs). Results are the mean accuracies of the best architectures
found on different adversarial attacks and the mean accuracy over all corruptions and severity levels
in CIFAR-10-C.

Test Accuracy (ϵ = 1.0)
Method Clean FGSM PDG APGD Squares Clean

CIFAR-10 CF-10-C

Optimum 94.68 69.24 58.85 54.02 73.61 58.55

C
le

an

BANANAS (White et al., 2021a) 94.21 64.25 41.10 18.62 68.69 55.52
Local Search (White et al., 2021b) 94.65 63.95 41.17 18.74 69.59 56.90

Random Search (Li & Talwalkar, 2019) 94.22 63.38 40.09 17.84 68.40 55.60
Regularized Evolution (Real et al., 2019) 94.53 63.30 40.23 18.11 68.92 56.21

FG
SM

BANANAS (White et al., 2021a) 93.52 66.35 45.59 20.72 68.01 54.88
Local Search (White et al., 2021b) 93.86 69.10 48.27 23.18 69.47 56.57

Random Search (Li & Talwalkar, 2019) 93.57 67.25 46.15 20.93 68.44 55.10
Regularized Evolution (Real et al., 2019) 93.77 68.82 47.99 22.59 69.20 56.11

4.2 NAS ON ROBUSTNESS

In this section, we perform different state-of-the-art NAS algorithms on the clean accuracy and the
FGSM (ϵ = 1) robust accuracy in the NAS-Bench-201 (Dong & Yang, 2020) search space, and
evaluate the best found architectures on all provided introduced adversarial attacks. We apply random
search (Li & Talwalkar, 2019), local search (White et al., 2021b), regularized evolution (Real et al.,
2019) and BANANAS (White et al., 2021a) with a maximal query amount of 300. The results are
shown in Table 1. Although clean accuracy is reduced, the overall robustness to all adversarial attacks
improves when the search is performed on FGSM (ϵ = 1.0) accuracy. Local Search achieves the
best performance, which indicates that localized changes to an architecture design seem to be able to
improve network robustness.

4.3 ANALYZING THE EFFECT OF ARCHITECTURE DESIGN ON ROBUSTNESS

In Figure 7, we show the top-20 performing architectures (color-coded, one operation for each edge)
with exactly 2 times 3 × 3 convolutions and no 1 × 1 convolutions (hence, the same parameter
count), according to the mean adversarial accuracy over all attacks as described in subsection 3.2 on

8

Published as a conference paper at ICLR 2023

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

0.380

0.385

0.390

0.395

0.400

M
ea

n
Ad

ve
rs

ar
ia

l A
cc

ur
ac

y

1 2 3 4 5 6
Operation

#5926
#4015
#944
#11286
#325
#4911
#9587
#1912
#12295
#258
#11226
#14272
#959
#448
#9193
#16
#6555
#2947
#6187
#11693

ar
ch

ite
ct

ur
e

Figure 7: Top-20 architectures (out of 408) with exactly 2 times 3× 3 convolutions and no 1× 1
convolutions according to mean adversarial accuracy on CIFAR-10. The operation number (1-6)
corresponds to the edge in the cell, see Figure 1 for cell connectivity and operations. Stacking
convolutions seems to be an important part of robust architectural design.

CIFAR-10. It is interesting to see that there are no convolutions on edges 2 and 4, and additionally no
dropping (operation zeroize) or skipping (operation skip-connect) of edge 1. In the case of edge 4, it
seems that a single convolutional layer connecting input and output of the cell increases sensitivity of
the network. Hence, most of the top-20 robust architectures stack convolutions (via edge 1, followed
by either edge 3 or 5), from which we hypothesize that stacking convolution operations might improve
robustness when designing architectures. At the same time, skipping input to output via edge 4
seems not to affect robustness negatively, as long as the input feature map is combined with stacked
convolutions. Further analyses can be found in Appendix B. We find that optimizing architecture
design can have a substantial impact on the robustness of a network. In this setting, where networks
have the same parameter count, we can see a large range of mean adversarial accuracies [0.21, 0.4]
showing the potential of doubling the robustness of a network by carefully crafting its topology.
Important to note here is that this is a first observation, which can be made by using our provided
dataset. This observation functions as a motivation for how this dataset can be used to analyze
robustness in combination with architecture design.

5 CONCLUSION

We introduce a dataset for neural architecture design and robustness to provide the research community
with more resources for analyzing what constitutes robust networks. We have evaluated all 6 466
unique architectures from the commonly used NAS-Bench-201 benchmark against several adversarial
attacks and image dataset corruptions. With this full evaluation at hand, we presented three use
cases for this dataset: First, the correlation between the robustness of the architectures and two
differentiable architecture measurements. We showed that these measurements are a good first
approach for the architecture’s robustness, but have to be taken with caution when the perturbation
increases. Second, neural architecture search directly on the robust accuracies, which indeed finds
more robust architectures for different adversarial attacks. And last, an initial analysis of architectural
design, where we showed that it is possible to improve robustness of networks with the same number
of parameters by carefully designing their topology.

Limitations and Broader Impact We show that carefully crafting the architectural design can lead
to substantial impact on the architecture’s robustness. This paper aims to promote and streamline
research on how the architecture design affects model robustness. It does so by evaluating pretrained
architectures and is thus complementary to any work focusing on the analysis of different, potentially
adversarial, training protocols.

9

Published as a conference paper at ICLR 2023

REPRODUCIBILITY

In order to ensure reproducibility, we build our dataset on architectures from a common NAS-
Benchmark, which is described in the main paper in subsection 3.1. In addition, all hyperparameters
for reproducing the robustness results are given in subsection 3.2. Lastly, a complete description of
the dataset itself is provided in the appendix, Appendix A. We additionally provide the reviewers a
subset of our dataset, also containing a notebook to see how to access the data using the helper class.

REFERENCES

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack:
a query-efficient black-box adversarial attack via random search. In European Conference on
Computer Vision, pp. 484–501. Springer, 2020.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. Understand-
ing and simplifying one-shot architecture search. In ICML, 2018.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(10):281–305, 2012.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. In ICLR, 2019.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras,
Ian J. Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial robustness.
CoRR, abs/1902.06705, 2019. URL http://arxiv.org/abs/1902.06705.

Avraam Chatzimichailidis, Janis Keuper, Franz-Josef Pfreundt, and Nicolas R. Gauger. Gradvis:
Visualization and second order analysis of optimization surfaces during the training of deep neural
networks. In Workshop on Machine Learning in High Performance Computing Environments,
MLHPC@SC, 2019.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the CIFAR datasets. CoRR, abs/1707.08819, 2017.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–2216.
PMLR, 2020.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
robustness benchmark. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), NeurIPS Datasets and
Benchmarks, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009.

Chaitanya Devaguptapu, Devansh Agarwal, Gaurav Mittal, Pulkit Gopalani, and Vineeth N. Bala-
subramanian. On adversarial robustness: A neural architecture search perspective. In ICCVW,
2021.

Samuel F. Dodge and Lina J. Karam. A study and comparison of human and deep learning recognition
performance under visual distortions. CoRR, abs/1705.02498, 2017. URL http://arxiv.
org/abs/1705.02498.

Minjing Dong, Yanxi Li, Yunhe Wang, and Chang Xu. Adversarially robust neural architectures.
CoRR, abs/2009.00902, 2020a.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four GPU hours. In CVPR,
2019.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In ICLR, 2020.

10

http://arxiv.org/abs/1902.06705
http://arxiv.org/abs/1705.02498
http://arxiv.org/abs/1705.02498

Published as a conference paper at ICLR 2023

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu. Benchmark-
ing adversarial robustness on image classification. In 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 318–328, 2020b. doi: 10.1109/CVPR42600.2020.00040.

Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan Liang, Tong Zhang, and Zhenguo Li.
Transnas-bench-101: Improving transferability and generalizability of cross-task neural architec-
ture search. In CVPR, 2021.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6572.

Minghao Guo, Yuzhe Yang, Rui Xu, Ziwei Liu, and Dahua Lin. When NAS meets robustness: In
search of robust architectures against adversarial attacks. In CVPR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015. doi: 10.1109/ICCV.2015.123.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representations,
2019.

Judy Hoffman, Daniel A. Roberts, and Sho Yaida. Robust learning with jacobian regularization.
CoRR, abs/1908.02729, 2019.

Ramtin Hosseini, Xingyi Yang, and Pengtao Xie. DSRNA: differentiable search of robust neural
architectures. In CVPR, 2021.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, and Eric P. Xing.
Neural architecture search with bayesian optimisation and optimal transport. In NIPS, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. In Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In NIPS, 2012.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale, 2017.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
UAI, 2019.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter W. Battaglia. Learning deep generative
models of graphs. CoRR, abs/1803.03324, 2018.

Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang, Chunming Wu, Bo Li, and Ting Wang. Deepsec:
A uniform platform for security analysis of deep learning model. In 2019 IEEE Symposium on
Security and Privacy (SP), pp. 673–690, 2019. doi: 10.1109/SP.2019.00023.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In
ICLR, 2019.

Jisoo Mok, Byunggook Na, Hyeokjun Choe, and Sungroh Yoon. Advrush: Searching for adversarially
robust neural architectures. In ICCV, 2021.

Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of tricks for adversarial
training. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=Xb8xvrtB8Ce.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In ICML, 2018.

11

http://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=Xb8xvrtB8Ce
https://openreview.net/forum?id=Xb8xvrtB8Ce

Published as a conference paper at ICLR 2023

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark
the robustness of machine learning models. In Reliable Machine Learning in the Wild Workshop,
34th International Conference on Machine Learning, 2017. URL http://arxiv.org/abs/
1707.04131.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V.
Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In ICML, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. In AAAI, 2019.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture
search via bayesian optimisation with weisfeiler-lehman kernels. In ICLR, 2021.

Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness
the cost of accuracy? - a comprehensive study on the robustness of 18 deep image classification
models. In ECCV, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations, 2014. URL http://arxiv.org/abs/1312.6199.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In AAAI, 2021a.

Colin White, Sam Nolen, and Yash Savani. Exploring the loss landscape in neural architecture search.
In UAI, 2021b.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Loddon Yuille, and Kaiming He. Feature
denoising for improving adversarial robustness. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 501–509, 2019a.

Cihang Xie, Mingxing Tan, Boqing Gong, Alan Loddon Yuille, and Quoc V. Le. Smooth adversarial
training. ArXiv, abs/2006.14536, 2020.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
In ICLR, 2019b.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
PC-DARTS: partial channel connections for memory-efficient architecture search. In ICLR, 2020.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In ICML, 2019.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter.
Understanding and robustifying differentiable architecture search. In ICLR, 2020.

Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. Bridging mode
connectivity in loss landscapes and adversarial robustness. In ICLR, 2020.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

12

http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1312.6199

Published as a conference paper at ICLR 2023

A DATASET

A.1 NAS-BENCH-201

We base our evaluations on the NAS-Bench-201 (Dong & Yang, 2020) search space. It is a cell-
based architecture search space. Each cell has in total 4 nodes and 6 edges. The nodes in this
search space correspond to the architecture’s feature maps and the edges represent the architec-
tures operation, which are chosen from the operation set O = {1 × 1 conv. , 3 × 3 conv. , 3 ×
3 avg. pooling , skip , zero} (see Figure 1). This search space contains in total 56 = 15 625 archi-
tectures, from which only 6 466 are unique, since the operations skip and zero can cause isomorphic
cells (see Figure 8), where the latter operation zero stands for dropping the edge. Each architecture is
trained on three different image datasets for 200 epochs: CIFAR-10 (Krizhevsky, 2009), CIFAR-100
(Krizhevsky, 2009) and ImageNet16-120 (Chrabaszcz et al., 2017). For our evaluations, we consider
all unique architectures in the search space and test splits of the corresponding datasets. Hence, we
evaluate 3 · 6 466 = 19 398 pretrained networks in total.

in

1

2 out3x3

3x3

avg
1x1

1x1

991

in

1

2 out1x1

avg

3x3
3x3

1x1

3365

Figure 8: Example of two isomorphic graphs in NAS-Bench-201. Due to the skip connection from
node in to node 1, both computational graphs are equivalent, but their identification in the search
space is different. For this dataset, we evaluated all non-isomorphic graphs (#991 was evaluated and
#3365 was not).

A.2 DATASET GATHERING

We collect evaluations for our dataset for different corruptions and adversarial attacks (as discussed
in subsection 3.2 and subsection 3.3) following algorithm 1. This process is also depicted in Figure 9.
Hyperparameter settings for adversarial attacks are listed in Table 2. Due to the heavy load of running
all these evaluations, they are performed on several clusters. These clusters are comprised of either (i)
compute nodes with Nvidia A100 GPUs, 512 GB RAM, and Intel Xeon IceLake-SP processors, (ii)
compute nodes with NVIDIA Quadro RTX 8000 GPUs, 1024 GB RAM, and AMD EPYC 7502P
processors, (iii) NVIDIA Tesla A100 GPUs, 2048 GB RAM, Intel Xeon Platinum 8360Y processors,
and (iv) NVIDIA Tesla A40 GPUs, 2048 GB RAM, Intel Xeon Platinum 8360Y processors.

Table 2: Hyperparameter settings of adversarial attacks evaluated.
Attack Hyperparameters
FGSM ϵ ∈ {.1, .5., 1, 2, 3, 4, 5, 6, 7, 8, 255}/255
PGD ϵ ∈ {.1, .5., 1, 2, 3, 4, 8, 255}/255

α = 0.01/0.3
40 attack iterations

APGD ϵ ∈ {.1, .5., 1, 2, 3, 4, 8, 255}/255
100 attack iterations

Square ϵ ∈ {.1, .5., 1, 2, 3, 4, 8, 255}/255
5 000 search iterations

13

Published as a conference paper at ICLR 2023

Algorithm 1: Robustness Dataset Gathering
Input: (i) Architecture space A (NAS-Bench-201).
Input: (ii) Test datasets D (CIFAR-10, CIFAR-100, ImageNet16-120).
Input: (iii) Set of attacks and/or corruptions C.
Input: (iv) Robustness Dataset R.

1 for a ∈ A do
▷ Load pretrained weights for a.

2 a.load_weights(d)
3 for d ∈ D do
4 for c(·, ·) ∈ C do

▷ Corrupt dataset d.
5 dc ← c(a, d)

▷ Evaluate architecture a with dc.
6 Accuracy,Confidence,ConfusionMatrix← eval(a, dc)

▷ Extend robustness dataset with evaluations.
7 R[d][c]["accuracy"][a]← Accuracy
8 R[d][c]["confidence"][a]← Confidence
9 R[d][c]["cm"][a]← ConfusionMatrix

10 end
11 end
12 end

NAS-Bench-201

Robustness
Dataset

Evaluation

Dataset
Corruption

Accuracy
Confidence

Confusion Matrix

Corrupted Data

Architecture
(trained)

Load
Parameters

Architecture
(untrained)

CIFAR-10

CIFAR-100

ImageNet16-120

Common
Corruptions

Adversarial
Attacks

Data

Attack

Figure 9: Diagram showing the gathering process for our robustness dataset. (i) An non-isomorphic
architecture contained in NAS-Bench-201 is created and its parameters are loaded from a provided
checkpoint, dependent on the dataset evaluated. (ii) Given the evaluation dataset, an attack or
corruption, and the trained network, the evaluation dataset is corrupted and (iii) the resulting corrupted
data is used to evaluate the network. (iv) The evaluation results are stored in our robustness dataset.

14

Published as a conference paper at ICLR 2023

A.3 DATASET STRUCTURE, DISTRIBUTION, AND LICENSE

Files are provided in json format to ensure platform-independence and to reduce the dependency on
external libraries (e.g. Python has built-in json-support).

We will publish code that accompanies our dataset on GitHub. The dataset itself will be linked from
GitHub and is hosted on an institutional cloud service. This ensures longtime availability and the
possibility to version the dataset. Dataset and code will be published at the notification date under
GNU GPLv3.

A.4 STRUCTURE

The dataset consists of 3 folders, one for each dataset evaluated (cifar10, cifar100,
ImageNet16-120). Each folder contains one json file for each combination of key and measure-
ment. Keys refer to the sort of attack or corruption used (Table 3 lists all keys). Measurements refer
to the collected evaluation type (accuracy, confidence, cm). Clean and adversarial evaluations
are performed on all datasets, while common corruptions are evaluated on cifar10 and cifar100.
Additionally, the dataset contains one metadata file (meta.json).

Table 3: Keys for attacks and corruptions evaluated.
Clean Adversarial Common Corruptions
clean aa_apgd-ce brightness

aa_square contrast
fgsm defocus_blur
pgd elastic_transform

fog
frost
gaussian_noise
glass_blur
impulse_noise
jpeg_compression
motion_blur
pixelate
shot_noise
snow
zoom_blur

Metadata The meta.json file contains information about each architecture in NAS-Bench-201.
This includes, for each architecture identifier, the corresponding string defining the network design (as
per (Dong & Yang, 2020)) as well as the identifier of the corresponding non-isomorphic architecture
from (Dong & Yang, 2020) that we evaluated. The file also contains all ϵ values that we evaluated for
each adversarial attack. An excerpt of this file is shown in Figure 10.

Files All files are named according to "{key}_{measurement}.json". Hence, the path to
all clean accuracies on cifar10 is "./cifar10/clean_accuracy.json". An excerpt of
this file is shown in Figure 11. Each file contains nested dictionaries stating the dataset, evaluation key
and measurement type. For evaluations with multiple measurements, e.g. in the case of adversarial
attacks for multiple ϵ values, the results are concatenated into a list. Files and their possible contents
are described in Table 4.

15

Published as a conference paper at ICLR 2023

{
" i d s " : {

. . . ,
" 21 " : {

" nb201 − s t r i n g " : " | nor_conv_1x1 ~ 0 | + | none ~ 0 | none ~ 1 | + | nor_conv_1x1 ~ 0 | nor_conv_3x3 ~ 1 | none ~ 2 | " ,
" i somorph " : " 21 "

} ,
. . . ,
" 1832 " : {

" nb201 − s t r i n g " : " | nor_conv_1x1 ~ 0 | + | nor_conv_1x1 ~ 0 | none ~ 1 | + | nor_conv_1x1 ~ 0 | s k i p _ c o n n e c t ~ 1 | none ~ 2 | " ,
" i somorph " : " 309 "

} ,
. . .

} ,
" e p s i l o n s " : {

" aa_apgd −ce " : [0 . 1 , 0 . 5 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 8 . 0] ,
" a a _ s q u a r e " : [0 . 1 , 0 . 5 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 8 . 0] ,
" fgsm " : [0 . 1 , 0 . 5 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 , 6 . 0 , 7 . 0 , 8 . 0 , 2 5 5 . 0] ,
" pgd " : [0 . 1 , 0 . 5 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 8 . 0]

}
}

Figure 10: Excerpt of meta.json showing meta information of architectures #21 and #1832,
as well as ϵ values for each attack. Architecture #21 is non-isomorphic and points to itself, while
architecture #1832 is an isomorphic instance of #309.

{
" c i f a r 1 0 " : {

" c l e a n " : {
" a c c u r a c y " : {

" 0 " : 0 . 8 5 6 ,
. . .

}
}

}

{
" c i f a r 1 0 " : {

" pgd " : {
" a c c u r a c y " : {

" 0 " : [0 . 8 1 2 , 0 . 5 8 2 , 0 . 2 9 5 , 0 . 0 3 4 , 0 . 0 0 2 , 0 . 0 , 0 . 0] ,
. . .

}
}

}

Figure 11: Excerpt of (left) clean_accuracy.json and (right) pgd_accuracy.json for
dataset cifar10 for the architecture #0. Numbers are rounded to improve readability.

Table 4: Files and their possible content.
File Description
clean_accuracy one accuracy value for each evaluated network
clean_confidence one confidence matrix for each evaluated network

and collection scheme
clean_cm one confusion matrix for each evaluated network

{attack}_accuracy list of accuracies, where each element corresponds
to the respective ϵ value

{attack}_confidence list of confidence matrices, where each element
corresponds to the respective ϵ value

{attack}_cm list of confusion matrices, where each element cor-
responds to the respective ϵ value

{corruption}_accuracy list of accuracies, where each element corresponds
to the respective corruption severity

{corruption}_confidence list of confidence matrices, where each element
corresponds to the respective corruption severity

{corruption}_cm list of confusion matrices, where each element cor-
responds to the respective corruption severity

We showed some analysis and possible use-cases on accuracies in the main paper. In the following,
we elaborate on and show confidence and confusion matrix (cm) measurements.

16

Published as a conference paper at ICLR 2023

A.5 CONFIDENCE

We collect the mean confidence after softmax for each network over the whole (attacked) test
dataset evaluated. We used 3 schemes to collect confidences (see Figure 13). First, confidences
for each class are given by true labels (called label). In case of cifar10, this results in a
10× 10 confidence matrix, for cifar100 a 100× 100 confidence matrix, and ImageNet16-120
a 120× 120 confidence matrix. Second, confidences for each class are given by the class predicted
by the network (called argmax). This again results in matrices of sizes as mentioned. Third,
confidences for correctly classified images as well as confidences for incorrectly classified images
(called prediction). For all image datasets, this results in a vector with 2 dimensions. Each result
is saved as a list (or list of list), see Figure 12.

Figure 14 shows a progression of label confidence values for class label 0 on cifar10 from
clean to fgsm with increasing values of ϵ. Figure 15 shows how prediction confidences of
correctly and incorrectly classified images correlate with increasing values of ϵ when attacked with
fgsm.

{
" c i f a r 1 0 " : {

" c l e a n " : {
" c o n f i d e n c e " : {

" 0 " : {
" l a b e l " : [[. . .]] ,
" argmax " : [[. . .]] ,
" p r e d i c t i o n " : [. . .]

}
}

}
}

Figure 12: Excerpt of clean_confidence.json for cifar10. Numbers are not shown to
improve readability.

17

Published as a conference paper at ICLR 2023

0 1 2 3 4 5 6 7 8 9
True Class

0

1

2

3

4

5

6

7

8

9

Pr
ed

ict
ed

 C
la

ss

0.89

0.01

0.03

0.01

0.01

0.00

0.00

0.00

0.03

0.01

0.01

0.94

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.03

0.02

0.00

0.84

0.03

0.03

0.02

0.03

0.01

0.00

0.00

0.01

0.00

0.03

0.77

0.03

0.10

0.03

0.02

0.01

0.01

0.01

0.00

0.02

0.03

0.88

0.02

0.02

0.02

0.00

0.00

0.00

0.00

0.02

0.09

0.02

0.83

0.01

0.02

0.00

0.00

0.01

0.00

0.02

0.03

0.01

0.01

0.91

0.00

0.00

0.00

0.01

0.00

0.01

0.02

0.03

0.03

0.00

0.90

0.00

0.00

0.03

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.93

0.01

0.01

0.04

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.92

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9
Argmax Class

0

1

2

3

4

5

6

7

8

9

Pr
ed

ict
ed

 C
la

ss

0.95

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.00

0.97

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.00

0.93

0.01

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.01

0.90

0.01

0.04

0.01

0.01

0.00

0.00

0.00

0.00

0.01

0.01

0.94

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.01

0.04

0.01

0.93

0.00

0.01

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.00

0.96

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.00

0.96

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.97

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.96

0.0

0.2

0.4

0.6

0.8

1.0

Corrent Incorrect
Classification Result

0.97 0.79

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Mean confidence scores on clean CIFAR-10 images for all non-isomorphic networks in
NAS-Bench-201. (top: label) For each true class label. (middle: argmax) For each predicted
class label. (bottom: prediction) For correct and incorrect classifications.

18

Published as a conference paper at ICLR 2023

0 1 2 3 4 5 6 7 8 9

0

0 1 2 3 4 5 6 7 8 9

0.
1

0 1 2 3 4 5 6 7 8 9
0.

5

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1 2 3 4 5 6 7 8 9

4

0 1 2 3 4 5 6 7 8 9

5

0 1 2 3 4 5 6 7 8 9

6

0 1 2 3 4 5 6 7 8 9

7

0 1 2 3 4 5 6 7 8 9

8

0 1 2 3 4 5 6 7 8 9

25
5

0.0 0.2 0.4 0.6 0.8 1.0
Class

0.0

0.2

0.4

0.6

0.8

1.0

Ep
sil

on

Class Label 0: Confidence Progression

Figure 14: Mean label confidence scores on FGSM-attacked CIFAR-10 images for different ϵ for
all non-isomorphic networks in NAS-Bench-201. Only confidence scores for class label 0 are shown.
Networks lose prediction confidence for the true label when ϵ increases.

19

Published as a conference paper at ICLR 2023

0.84 0.86 0.88 0.90 0.92 0.94 0.96
Correct Classification Confidence

0.80

0.82

0.84

0.86

0.88

0.90

In
co

rre
ct

 C
la

ss
ifi

ca
tio

n
Co

nf
id

en
ce

0

0.1

0.5

1
23

4
5

6
7

8

255

Figure 15: Mean prediction confidence scores on FGSM-attacked CIFAR-10 images for
different ϵ (on top of points) for all non-isomorphic networks in NAS-Bench-201. Networks become
less confident in their prediction if their prediction is correct when ϵ increases. Networks become
more confident in their prediction if their prediction is incorrect, however, only up to a certain ϵ value.
When ϵ further increases, confidence drops again.

A.6 CONFUSION MATRIX

For each evaluated network, we collect the confusion matrix (key: cm) for the corresponding
(attacked) test dataset. The result is a 10× 10 matrix in case of cifar10, a 100× 100 matrix in
case of cifar100, and a 120× 120 matrix in case of ImageNet16-120. See Figure 16 for an
example, where we summed up confusion matrices for all networks on cifar10.

0 1 2 3 4 5 6 7 8 9
True Class

0

1

2

3

4

5

6

7

8

9

Pr
ed

ict
ed

 C
la

ss

6e+6

4e+4

1e+5

6e+4

4e+4

9e+3

2e+4

3e+4

2e+5

7e+4

4e+4

6e+6

6e+3

1e+4

4e+3

4e+3

9e+3

7e+3

4e+4

2e+5

1e+5

4e+3

6e+6

2e+5

2e+5

1e+5

2e+5

5e+4

3e+4

2e+4

6e+4

2e+4

2e+5

5e+6

2e+5

6e+5

2e+5

9e+4

4e+4

4e+4

4e+4

6e+3

1e+5

1e+5

6e+6

9e+4

1e+5

1e+5

1e+4

8e+3

3e+4

7e+3

1e+5

5e+5

1e+5

5e+6

5e+4

1e+5

1e+4

1e+4

3e+4

9e+3

1e+5

2e+5

6e+4

5e+4

6e+6

2e+4

9e+3

1e+4

5e+4

4e+3

6e+4

1e+5

1e+5

1e+5

1e+4

6e+6

9e+3

2e+4

2e+5

5e+4

3e+4

3e+4

9e+3

7e+3

1e+4

8e+3

6e+6

6e+4

8e+4

2e+5

1e+4

2e+4

6e+3

5e+3

1e+4

1e+4

7e+4

6e+6

0

1

2

3

4

5

6

1e6

Figure 16: Aggregated confusion matrices on clean CIFAR-10 images for all non-isomorphic
networks in NAS-Bench-201.

20

Published as a conference paper at ICLR 2023

A.7 CORRELATIONS BETWEEN IMAGE DATASETS

In Figure 17 we show the correlation between all clean and adversarial accuracies over all datasets
collected. This plot shows a positive correlation between the image datasets for the one-step FGSM
attack, whereas for all other multi-step attacks, the correlation becomes close to zero or even negative.

cif
ar

10
, c

le
an

, e
=0

cif
ar

10
0,

 c
le

an
, e

=0
Im

ag
eN

et
16

-1
20

, c
le

an
, e

=0
cif

ar
10

, f
gs

m
, e

=0
.1

cif
ar

10
0,

 fg
sm

, e
=0

.1
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=0
.1

cif
ar

10
, f

gs
m

, e
=0

.5
cif

ar
10

0,
 fg

sm
, e

=0
.5

Im
ag

eN
et

16
-1

20
, f

gs
m

, e
=0

.5
cif

ar
10

, f
gs

m
, e

=1
cif

ar
10

0,
 fg

sm
, e

=1
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=1
cif

ar
10

, f
gs

m
, e

=2
cif

ar
10

0,
 fg

sm
, e

=2
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=2
cif

ar
10

, f
gs

m
, e

=3
cif

ar
10

0,
 fg

sm
, e

=3
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=3
cif

ar
10

, f
gs

m
, e

=4
cif

ar
10

0,
 fg

sm
, e

=4
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=4
cif

ar
10

, f
gs

m
, e

=5
cif

ar
10

0,
 fg

sm
, e

=5
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=5
cif

ar
10

, f
gs

m
, e

=6
cif

ar
10

0,
 fg

sm
, e

=6
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=6
cif

ar
10

, f
gs

m
, e

=7
cif

ar
10

0,
 fg

sm
, e

=7
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=7
cif

ar
10

, f
gs

m
, e

=8
cif

ar
10

0,
 fg

sm
, e

=8
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=8
cif

ar
10

, f
gs

m
, e

=2
55

cif
ar

10
0,

 fg
sm

, e
=2

55
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=2
55

cif
ar

10
, p

gd
, e

=0
.1

cif
ar

10
0,

 p
gd

, e
=0

.1
Im

ag
eN

et
16

-1
20

, p
gd

, e
=0

.1
cif

ar
10

, p
gd

, e
=0

.5
cif

ar
10

0,
 p

gd
, e

=0
.5

Im
ag

eN
et

16
-1

20
, p

gd
, e

=0
.5

cif
ar

10
, p

gd
, e

=1
cif

ar
10

0,
 p

gd
, e

=1
Im

ag
eN

et
16

-1
20

, p
gd

, e
=1

cif
ar

10
, p

gd
, e

=2
cif

ar
10

0,
 p

gd
, e

=2
Im

ag
eN

et
16

-1
20

, p
gd

, e
=2

cif
ar

10
, p

gd
, e

=3
cif

ar
10

0,
 p

gd
, e

=3
Im

ag
eN

et
16

-1
20

, p
gd

, e
=3

cif
ar

10
, p

gd
, e

=4
cif

ar
10

0,
 p

gd
, e

=4
Im

ag
eN

et
16

-1
20

, p
gd

, e
=4

cif
ar

10
, p

gd
, e

=8
cif

ar
10

0,
 p

gd
, e

=8
Im

ag
eN

et
16

-1
20

, p
gd

, e
=8

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=0
.1

cif
ar

10
0,

 a
a_

ap
gd

-c
e,

 e
=0

.1
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=0

.1
cif

ar
10

, a
a_

ap
gd

-c
e,

 e
=0

.5
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=0
.5

Im
ag

eN
et

16
-1

20
, a

a_
ap

gd
-c

e,
 e

=0
.5

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=1
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=1
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=1

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=2
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=2
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=2

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=3
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=3
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=3

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=4
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=4
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=4

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=8
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=8
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=8

cif
ar

10
, a

a_
sq

ua
re

, e
=0

.1
cif

ar
10

0,
 a

a_
sq

ua
re

, e
=0

.1
Im

ag
eN

et
16

-1
20

, a
a_

sq
ua

re
, e

=0
.1

cif
ar

10
, a

a_
sq

ua
re

, e
=0

.5
cif

ar
10

0,
 a

a_
sq

ua
re

, e
=0

.5
Im

ag
eN

et
16

-1
20

, a
a_

sq
ua

re
, e

=0
.5

cif
ar

10
, a

a_
sq

ua
re

, e
=1

cif
ar

10
0,

 a
a_

sq
ua

re
, e

=1
Im

ag
eN

et
16

-1
20

, a
a_

sq
ua

re
, e

=1
cif

ar
10

, a
a_

sq
ua

re
, e

=2
cif

ar
10

0,
 a

a_
sq

ua
re

, e
=2

Im
ag

eN
et

16
-1

20
, a

a_
sq

ua
re

, e
=2

cif
ar

10
, a

a_
sq

ua
re

, e
=3

cif
ar

10
0,

 a
a_

sq
ua

re
, e

=3
Im

ag
eN

et
16

-1
20

, a
a_

sq
ua

re
, e

=3
cif

ar
10

, a
a_

sq
ua

re
, e

=4
cif

ar
10

0,
 a

a_
sq

ua
re

, e
=4

Im
ag

eN
et

16
-1

20
, a

a_
sq

ua
re

, e
=4

cif
ar

10
, a

a_
sq

ua
re

, e
=8

cif
ar

10
0,

 a
a_

sq
ua

re
, e

=8
Im

ag
eN

et
16

-1
20

, a
a_

sq
ua

re
, e

=8

cifar10, clean, e=0cifar100, clean, e=0ImageNet16-120, clean, e=0cifar10, fgsm, e=0.1cifar100, fgsm, e=0.1ImageNet16-120, fgsm, e=0.1cifar10, fgsm, e=0.5cifar100, fgsm, e=0.5ImageNet16-120, fgsm, e=0.5cifar10, fgsm, e=1cifar100, fgsm, e=1ImageNet16-120, fgsm, e=1cifar10, fgsm, e=2cifar100, fgsm, e=2ImageNet16-120, fgsm, e=2cifar10, fgsm, e=3cifar100, fgsm, e=3ImageNet16-120, fgsm, e=3cifar10, fgsm, e=4cifar100, fgsm, e=4ImageNet16-120, fgsm, e=4cifar10, fgsm, e=5cifar100, fgsm, e=5ImageNet16-120, fgsm, e=5cifar10, fgsm, e=6cifar100, fgsm, e=6ImageNet16-120, fgsm, e=6cifar10, fgsm, e=7cifar100, fgsm, e=7ImageNet16-120, fgsm, e=7cifar10, fgsm, e=8cifar100, fgsm, e=8ImageNet16-120, fgsm, e=8cifar10, fgsm, e=255cifar100, fgsm, e=255ImageNet16-120, fgsm, e=255cifar10, pgd, e=0.1cifar100, pgd, e=0.1ImageNet16-120, pgd, e=0.1cifar10, pgd, e=0.5cifar100, pgd, e=0.5ImageNet16-120, pgd, e=0.5cifar10, pgd, e=1cifar100, pgd, e=1ImageNet16-120, pgd, e=1cifar10, pgd, e=2cifar100, pgd, e=2ImageNet16-120, pgd, e=2cifar10, pgd, e=3cifar100, pgd, e=3ImageNet16-120, pgd, e=3cifar10, pgd, e=4cifar100, pgd, e=4ImageNet16-120, pgd, e=4cifar10, pgd, e=8cifar100, pgd, e=8ImageNet16-120, pgd, e=8cifar10, aa_apgd-ce, e=0.1cifar100, aa_apgd-ce, e=0.1ImageNet16-120, aa_apgd-ce, e=0.1cifar10, aa_apgd-ce, e=0.5cifar100, aa_apgd-ce, e=0.5ImageNet16-120, aa_apgd-ce, e=0.5cifar10, aa_apgd-ce, e=1cifar100, aa_apgd-ce, e=1ImageNet16-120, aa_apgd-ce, e=1cifar10, aa_apgd-ce, e=2cifar100, aa_apgd-ce, e=2ImageNet16-120, aa_apgd-ce, e=2cifar10, aa_apgd-ce, e=3cifar100, aa_apgd-ce, e=3ImageNet16-120, aa_apgd-ce, e=3cifar10, aa_apgd-ce, e=4cifar100, aa_apgd-ce, e=4ImageNet16-120, aa_apgd-ce, e=4cifar10, aa_apgd-ce, e=8cifar100, aa_apgd-ce, e=8ImageNet16-120, aa_apgd-ce, e=8cifar10, aa_square, e=0.1cifar100, aa_square, e=0.1ImageNet16-120, aa_square, e=0.1cifar10, aa_square, e=0.5cifar100, aa_square, e=0.5ImageNet16-120, aa_square, e=0.5cifar10, aa_square, e=1cifar100, aa_square, e=1ImageNet16-120, aa_square, e=1cifar10, aa_square, e=2cifar100, aa_square, e=2ImageNet16-120, aa_square, e=2cifar10, aa_square, e=3cifar100, aa_square, e=3ImageNet16-120, aa_square, e=3cifar10, aa_square, e=4cifar100, aa_square, e=4ImageNet16-120, aa_square, e=4cifar10, aa_square, e=8cifar100, aa_square, e=8ImageNet16-120, aa_square, e=8 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 17: Kendall rank correlation coefficient between all clean and adversarial accuracies that are
evaluated in our dataset.

21

Published as a conference paper at ICLR 2023

A.8 EXAMPLE IMAGE OF CORRUPTIONS IN CIFAR-10-C

ga
us

sia
n_

no
ise

sh
ot

_n
oi

se

im
pu

lse
_n

oi
se

de
fo

cu
s_

bl
ur

gl
as

s_
bl

ur

m
ot

io
n_

bl
ur

zo
om

_b
lu

r

sn
ow

fro
st

fo
g

br
ig

ht
ne

ss

co
nt

ra
st

el
as

tic
_t

ra
ns

fo
rm

pi
xe

la
te

jp
eg

_c
om

pr
es

sio
n

1

2

3

4

5

Se
ve

rit
y

Figure 18: An example image of CIFAR-10-C (Hendrycks & Dietterich, 2019) with different
corruption types at different severity levels. CIFAR-100-C (Hendrycks & Dietterich, 2019) consists
of images with the same corruption types and severity levels.

A.9 MAIN PAPER FIGURES FOR OTHER IMAGE DATASETS

A.9.1 CIFAR-100 ADVERSARIAL ATTACK ACCURACIES (FIGURE 2)

0 0.1 0.5 1 2 3 4 5 6 7 8 255
epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 FGSM accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 PGD accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 AA_APGD-CE accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 AA_SQUARE accuracies

Figure 19: Accuracy boxplots over all unique architectures in NAS-Bench-201 for different adver-
sarial attacks (FGSM (Goodfellow et al., 2015), PGD (Kurakin et al., 2017), APGD (Croce & Hein,
2020), Square (Andriushchenko et al., 2020)) and perturbation magnitude values ϵ, evaluated on
CIFAR-100. Red line corresponds to guessing.

22

Published as a conference paper at ICLR 2023

A.9.2 IMAGENET16-120 ADVERSARIAL ATTACK ACCURACIES (FIGURE 2)

0 0.1 0.5 1 2 3 4 5 6 7 8 255
epsilon

0.0

0.1

0.2

0.3

0.4
ac

cu
ra

cy

ImageNet16-120 FGSM accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4

ac
cu

ra
cy

ImageNet16-120 PGD accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4

ac
cu

ra
cy

ImageNet16-120 AA_APGD-CE accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4
ac

cu
ra

cy

ImageNet16-120 AA_SQUARE accuracies

Figure 20: Accuracy boxplots over all unique architectures in NAS-Bench-201 for different adver-
sarial attacks (FGSM (Goodfellow et al., 2015), PGD (Kurakin et al., 2017), APGD (Croce & Hein,
2020), Square (Andriushchenko et al., 2020)) and perturbation magnitude values ϵ, evaluated on
ImageNet16-12. Red line corresponds to guessing.

23

Published as a conference paper at ICLR 2023

A.9.3 CIFAR-10-C COMMON CORRUPTION ACCURACIES (FIGURE 4)

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 brightness accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 contrast accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 defocus_blur accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 elastic_transform accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 fog accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 frost accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 gaussian_noise accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 glass_blur accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 impulse_noise accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 jpeg_compression accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 motion_blur accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 pixelate accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 shot_noise accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 snow accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 zoom_blur accuracy

Figure 21: Accuracy boxplots over all unique architectures in NAS-Bench-201 for different corruption
types at different severity levels, evaluated on CIFAR-10-C. Red line corresponds to guessing.

24

Published as a conference paper at ICLR 2023

A.9.4 CIFAR-100-C COMMON CORRUPTION ACCURACIES (FIGURE 4)

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 brightness accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 contrast accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 defocus_blur accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 elastic_transform accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 fog accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ac

cu
ra

cy
cifar100 frost accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 gaussian_noise accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 glass_blur accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 impulse_noise accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 jpeg_compression accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ac

cu
ra

cy
cifar100 motion_blur accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 pixelate accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 shot_noise accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 snow accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 zoom_blur accuracy

Figure 22: Accuracy boxplots over all unique architectures in NAS-Bench-201 for different corrup-
tion types at different severity levels, evaluated on CIFAR-100-C. Red line corresponds to guessing.

25

Published as a conference paper at ICLR 2023

A.9.5 CIFAR-100 ADVERSARIAL ATTACK CORRELATIONS (FIGURE 3)

cle
an

, e
=0

fg
sm

, e
=0

.1
fg

sm
, e

=0
.5

fg
sm

, e
=1

fg
sm

, e
=2

fg
sm

, e
=3

fg
sm

, e
=4

fg
sm

, e
=5

fg
sm

, e
=6

fg
sm

, e
=7

fg
sm

, e
=8

fg
sm

, e
=2

55
pg

d,
 e

=0
.1

pg
d,

 e
=0

.5
pg

d,
 e

=1
pg

d,
 e

=2
pg

d,
 e

=3
pg

d,
 e

=4
pg

d,
 e

=8
aa

_a
pg

d-
ce

, e
=0

.1
aa

_a
pg

d-
ce

, e
=0

.5
aa

_a
pg

d-
ce

, e
=1

aa
_a

pg
d-

ce
, e

=2
aa

_a
pg

d-
ce

, e
=3

aa
_a

pg
d-

ce
, e

=4
aa

_a
pg

d-
ce

, e
=8

aa
_s

qu
ar

e,
 e

=0
.1

aa
_s

qu
ar

e,
 e

=0
.5

aa
_s

qu
ar

e,
 e

=1
aa

_s
qu

ar
e,

 e
=2

aa
_s

qu
ar

e,
 e

=3
aa

_s
qu

ar
e,

 e
=4

aa
_s

qu
ar

e,
 e

=8

clean, e=0
fgsm, e=0.1
fgsm, e=0.5

fgsm, e=1
fgsm, e=2
fgsm, e=3
fgsm, e=4
fgsm, e=5
fgsm, e=6
fgsm, e=7
fgsm, e=8

fgsm, e=255
pgd, e=0.1
pgd, e=0.5

pgd, e=1
pgd, e=2
pgd, e=3
pgd, e=4
pgd, e=8

aa_apgd-ce, e=0.1
aa_apgd-ce, e=0.5

aa_apgd-ce, e=1
aa_apgd-ce, e=2
aa_apgd-ce, e=3
aa_apgd-ce, e=4
aa_apgd-ce, e=8
aa_square, e=0.1
aa_square, e=0.5

aa_square, e=1
aa_square, e=2
aa_square, e=3
aa_square, e=4
aa_square, e=8 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 23: Kendall rank correlation coefficient between clean accuracies and robust accuracies on dif-
ferent attacks and magnitude values ϵ on CIFAR-100 for all unique architectures in NAS-Bench-201.

26

Published as a conference paper at ICLR 2023

A.9.6 IMAGENET16-120 ADVERSARIAL ATTACK CORRELATIONS (FIGURE 3)

cle
an

, e
=0

fg
sm

, e
=0

.1
fg

sm
, e

=0
.5

fg
sm

, e
=1

fg
sm

, e
=2

fg
sm

, e
=3

fg
sm

, e
=4

fg
sm

, e
=5

fg
sm

, e
=6

fg
sm

, e
=7

fg
sm

, e
=8

fg
sm

, e
=2

55
pg

d,
 e

=0
.1

pg
d,

 e
=0

.5
pg

d,
 e

=1
pg

d,
 e

=2
pg

d,
 e

=3
pg

d,
 e

=4
pg

d,
 e

=8
aa

_a
pg

d-
ce

, e
=0

.1
aa

_a
pg

d-
ce

, e
=0

.5
aa

_a
pg

d-
ce

, e
=1

aa
_a

pg
d-

ce
, e

=2
aa

_a
pg

d-
ce

, e
=3

aa
_a

pg
d-

ce
, e

=4
aa

_a
pg

d-
ce

, e
=8

aa
_s

qu
ar

e,
 e

=0
.1

aa
_s

qu
ar

e,
 e

=0
.5

aa
_s

qu
ar

e,
 e

=1
aa

_s
qu

ar
e,

 e
=2

aa
_s

qu
ar

e,
 e

=3
aa

_s
qu

ar
e,

 e
=4

aa
_s

qu
ar

e,
 e

=8

clean, e=0
fgsm, e=0.1
fgsm, e=0.5

fgsm, e=1
fgsm, e=2
fgsm, e=3
fgsm, e=4
fgsm, e=5
fgsm, e=6
fgsm, e=7
fgsm, e=8

fgsm, e=255
pgd, e=0.1
pgd, e=0.5

pgd, e=1
pgd, e=2
pgd, e=3
pgd, e=4
pgd, e=8

aa_apgd-ce, e=0.1
aa_apgd-ce, e=0.5

aa_apgd-ce, e=1
aa_apgd-ce, e=2
aa_apgd-ce, e=3
aa_apgd-ce, e=4
aa_apgd-ce, e=8
aa_square, e=0.1
aa_square, e=0.5

aa_square, e=1
aa_square, e=2
aa_square, e=3
aa_square, e=4
aa_square, e=8 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 24: Kendall rank correlation coefficient between clean accuracies and robust accuracies
on different attacks and magnitude values ϵ on ImageNet16-120 for all unique architectures in
NAS-Bench-201.

27

Published as a conference paper at ICLR 2023

A.9.7 CIFAR-100-C COMMON CORRUPTION CORRELATIONS (FIGURE 5)

cle
an

br
ig

ht
ne

ss
, s

=3
co

nt
ra

st
, s

=3
de

fo
cu

s_
bl

ur
, s

=3
el

as
tic

_t
ra

ns
fo

rm
, s

=3
fo

g,
 s=

3
fro

st
, s

=3
ga

us
sia

n_
no

ise
, s

=3
gl

as
s_

bl
ur

, s
=3

im
pu

lse
_n

oi
se

, s
=3

jp
eg

_c
om

pr
es

sio
n,

 s=
3

m
ot

io
n_

bl
ur

, s
=3

pi
xe

la
te

, s
=3

sh
ot

_n
oi

se
, s

=3
sn

ow
, s

=3
zo

om
_b

lu
r,

s=
3

clean
brightness, s=3

contrast, s=3
defocus_blur, s=3

elastic_transform, s=3
fog, s=3

frost, s=3
gaussian_noise, s=3

glass_blur, s=3
impulse_noise, s=3

jpeg_compression, s=3
motion_blur, s=3

pixelate, s=3
shot_noise, s=3

snow, s=3
zoom_blur, s=3 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 25: Kendall rank correlation coefficient between clean accuracies and accuracies on different
corruptions at severity level 4 on CIFAR-100-C for all unique architectures in NAS-Bench-201.

28

Published as a conference paper at ICLR 2023

B ANALYSIS

In this section, we first depict the best architectures in NAS-Bench-201 (Dong & Yang, 2020) in
subsection B.1, then show the effect of parameter count on robustness and the magnitude of potential
gains in robustness in a limited parameter count setting in subsection B.2, and lastly show the effect
of single changes to the best performing architecture according to clean accuracy in subsection B.3.

B.1 BEST ARCHITECTURES

Figure 26 visualizes the best architectures in the NAS-Bench-201 (Dong & Yang, 2020) search
space in terms of clean accuracy, mean adversarial accuracy, and mean common corruption accuracy
on CIFAR-10 and their respective edit distances. The edit distance is defined by the number of
changes, either node or edge, to change the graph to the target graph. In the case of NAS-Bench-201
architectures, an edit distance of 1 means that exactly one operation differs between two architectures.
So in order to modify the best performing architecture in terms of clean accuracy (#13714) into the
best performing architecture according to mean corruption accuracy (#3456), we need to exchange
two (out of six) operations: (i) exchange operation 2 from 3× 3 convolution to zero and (ii) exchange
operation 5 from 1× 1 convolution to 3× 3 convolution.

in

1

2 out3x3

1x1
3x3

3x3

13714

in

1

2 out3x3

1x1

3x3

3x3

6118

in

1

2 out

3x3

3x3

3456
3x3 3x3 3x3

3x3

 distance = 2

 distance = 2 distance = 3

Figure 26: Best architectures in NAS-Bench-201 according to (left) clean accuracy, (middle) mean
adversarial accuracy (over all attacks and ϵ values as described in subsection 3.2), and (right) mean
common corruption accuracy (over all corruptions and severities) on CIFAR-10. See Figure 1 for cell
connectivity and operations.

0.5 0.6 0.7 0.8 0.9
Clean

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ea

n
Ad

ve
rs

ar
ia

l R
ob

us
tn

es
s

0

10

20

30

40

50

pa
ra

m
et

er
s

0.5 0.6 0.7 0.8 0.9
Clean

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n
Co

rru
pt

io
n

Ro
bu

st
ne

ss

0

10

20

30

40

50

pa
ra

m
et

er
s

Figure 27: (left) Mean adversarial robustness accuracies and (right) mean corruption robustness
accuracies vs. clean accuracies on CIFAR-10 for all unique architectures in NAS-Bench-201. Scatter
points are colored based on the number of kernel parameters of a single cell (1 for each 1 × 1
convolution, 9 for each 3× 3 convolution).

B.2 CELL KERNEL PARAMETER COUNT

Figure 27 displays the mean adversarial robustness accuracies (left) and the mean corruption ro-
bustness accuracies (right) against the clean accuracy, color-coded by the number of cell kernel
parameters. We count 1 for each 1× 1 convolution and 9 for each 3× 3 convolution contained in

29

Published as a conference paper at ICLR 2023

the cell, hence, their number ranges in [0, 54]. Since these are multipliers for the parameter count of
the whole network, we coin these cell kernel parameters. Overall, we can see that the cell kernel
parameter count matters in terms of robustness, hence, that networks with large parameter counts are
more robust in general. We can also see that the number of cell kernel parameters are more essential
for robustness against common corruptions, where the correlation between clean and corruption
accuracy is more linear. Also in terms of adversarial robustness, there seems to be a large magnitude
of possible improvements that can be gained by optimizing architecture design.

Limited Cell Parameter Count To further investigate the magnitude of possible improvements via
architectural design optimization, we look into the scenario of limited cell parameter count.

0 10 20 30 40 50
Cell Kernel Parameters

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
M

ea
n

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y

Figure 28: Mean robust accuracy over all attacks as described in subsection 3.2 on CIFAR-10 by
kernel parameters ∈ [0, 54] for all unique architectures in NAS-Bench-201. Orange scatter points
depict all architectures with kernel parameter count 18, hence, architectures with exactly 2 times 3× 3
convolutions. Although having exactly the same parameter count, the mean adversarial robustness of
these networks ranges in [0.21, 0.40].

In Figure 28, we depict all unique architectures in NAS-Bench-201 by their mean adversarial
robustness and cell kernel parameter count. Networks with parameter count 18 (408 instances in
total) are highlighted in orange. As we can see, there is a large range of mean adversarial accuracies
[0.21, 0.4] for the parameter count 18 showing the potential of doubling the robustness of a network
with the same parameter count by carefully crafting its topology. In Figure 29 we show the top-
20 performing architectures (color-coded, one operation for each edge) in the mentioned scenario
of a parameter count of 18, according to (top) mean adversarial and (bottom) mean corruption
accuracy. It is interesting to see that in both cases, there are (almost) no convolutions on edges 2 and
4, and additionally no dropping or skipping of edge 1. In the case of edge 4, it seems that a single
convolution layer connecting input and output of the cell increases sensitivity of the network. Hence,
most of the top-20 robust architectures stack convolutions (via edge 1, followed by either edge 3
or 5), from which we hypothesize that stacking convolutions operations might improve robustness
when designing architectures. At the same time, skipping input to output via edge 4 seems not to
affect robustness negatively, as long as the input feature map is combined with stacked convolutions.
Important to note here is that this is a first observation, which can be made by using our provided
dataset. This observation functions as a motivation for how this dataset can be used to analyze
robustness in combination with architecture design.

30

Published as a conference paper at ICLR 2023

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

0.380

0.385

0.390

0.395

0.400

M
ea

n
Ad

ve
rs

ar
ia

l A
cc

ur
ac

y

1 2 3 4 5 6
Operation

#5926
#4015
#944
#11286
#325
#4911
#9587
#1912
#12295
#258
#11226
#14272
#959
#448
#9193
#16
#6555
#2947
#6187
#11693

ar
ch

ite
ct

ur
e

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

0.540

0.545

0.550

0.555

0.560

M
ea

n
Co

rru
pt

io
n

Ac
cu

ra
cy

1 2 3 4 5 6
Operation

#15365
#4128
#546
#10399
#3972
#11693
#2745
#7789
#5334
#14416
#3678
#6483
#2528
#42
#1617
#258
#12617
#11226
#12295
#15081

ar
ch

ite
ct

ur
e

Figure 29: Top-20 architectures with cell kernel parameter count 18 (hence, architectures with
exactly 2 times 3× 3 convolutions) according to (top) mean adversarial accuracy and (bottom) mean
corruption accuracy on CIFAR-10. See Figure 1 for cell connectivity and operations (1-6).

31

Published as a conference paper at ICLR 2023

B.3 GAINS AND LOSSES BY SINGLE CHANGES

The fact that our dataset contains evaluations for all unique architectures in NAS-Bench-201 enables
us to analyze the effect of small architectural changes. In Figure 30, we depict again all unique
architectures by their clean and robust accuracies on CIFAR-10 (Krizhevsky, 2009). The red data
point in both plots shows the best performing architecture in terms of clean accuracy (#13714,
see Figure 26), while the orange points are its neighboring architectures with edit distance 1. The
operation changed for each point is shown in the legend. As we can see in the case of adversarial
attacks, we can trade-off more robust accuracy for less clean accuracy by changing only one operation.
While some changes seem obvious (adding more parameters as with 13 and 14), it is interesting to
see that exchanging the 3× 3 convolution on edge 3 with average pooling (and hence, reducing the
amount of parameters) also improves adversarial robustness. In terms of robustness towards common
corruptions, each architectural change leads to worse clean and robust accuracy in this case. Changing
more than one operation is necessary to improve common corruption accuracy of this network (as we
have seen in Figure 26).

0.5 0.6 0.7 0.8 0.9
Clean

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ea

n
Ad

ve
rs

ar
ia

l

0.925 0.930 0.935 0.940 0.945
Clean

0.34

0.36

0.38

0.40

0.42

1
2

3

4

5

6

7

8
910

11

12

13
14

1516

17

18

19

20

21

22

23

24

 1: [1] nor_conv_3x3~0 -> nor_conv_1x1~0
 2: [1] nor_conv_3x3~0 -> skip_connect~0
 3: [1] nor_conv_3x3~0 -> avg_pool_3x3~0
 4: [1] nor_conv_3x3~0 -> none~0
 5: [2] nor_conv_3x3~0 -> nor_conv_1x1~0
 6: [2] nor_conv_3x3~0 -> skip_connect~0
 7: [2] nor_conv_3x3~0 -> avg_pool_3x3~0
 8: [2] nor_conv_3x3~0 -> none~0
 9: [3] nor_conv_3x3~1 -> nor_conv_1x1~1
10: [3] nor_conv_3x3~1 -> skip_connect~1
11: [3] nor_conv_3x3~1 -> avg_pool_3x3~1
12: [3] nor_conv_3x3~1 -> none~1
13: [4] skip_connect~0 -> nor_conv_3x3~0
14: [4] skip_connect~0 -> nor_conv_1x1~0
15: [4] skip_connect~0 -> avg_pool_3x3~0
16: [4] skip_connect~0 -> none~0
17: [5] nor_conv_1x1~1 -> nor_conv_3x3~1
18: [5] nor_conv_1x1~1 -> skip_connect~1
19: [5] nor_conv_1x1~1 -> avg_pool_3x3~1
20: [5] nor_conv_1x1~1 -> none~1
21: [6] nor_conv_3x3~2 -> nor_conv_1x1~2
22: [6] nor_conv_3x3~2 -> skip_connect~2
23: [6] nor_conv_3x3~2 -> avg_pool_3x3~2
24: [6] nor_conv_3x3~2 -> none~2

0.5 0.6 0.7 0.8 0.9
Clean

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n
Co

rru
pt

io
n

0.925 0.930 0.935 0.940 0.945
Clean

0.52

0.53

0.54

0.55

0.56

0.57

0.58

12

34
5

6

7

8

9

10

11

12

13

14

15
16

1718

19

20

21

22

23

24

 1: [1] nor_conv_3x3~0 -> nor_conv_1x1~0
 2: [1] nor_conv_3x3~0 -> skip_connect~0
 3: [1] nor_conv_3x3~0 -> avg_pool_3x3~0
 4: [1] nor_conv_3x3~0 -> none~0
 5: [2] nor_conv_3x3~0 -> nor_conv_1x1~0
 6: [2] nor_conv_3x3~0 -> skip_connect~0
 7: [2] nor_conv_3x3~0 -> avg_pool_3x3~0
 8: [2] nor_conv_3x3~0 -> none~0
 9: [3] nor_conv_3x3~1 -> nor_conv_1x1~1
10: [3] nor_conv_3x3~1 -> skip_connect~1
11: [3] nor_conv_3x3~1 -> avg_pool_3x3~1
12: [3] nor_conv_3x3~1 -> none~1
13: [4] skip_connect~0 -> nor_conv_3x3~0
14: [4] skip_connect~0 -> nor_conv_1x1~0
15: [4] skip_connect~0 -> avg_pool_3x3~0
16: [4] skip_connect~0 -> none~0
17: [5] nor_conv_1x1~1 -> nor_conv_3x3~1
18: [5] nor_conv_1x1~1 -> skip_connect~1
19: [5] nor_conv_1x1~1 -> avg_pool_3x3~1
20: [5] nor_conv_1x1~1 -> none~1
21: [6] nor_conv_3x3~2 -> nor_conv_1x1~2
22: [6] nor_conv_3x3~2 -> skip_connect~2
23: [6] nor_conv_3x3~2 -> avg_pool_3x3~2
24: [6] nor_conv_3x3~2 -> none~2

Figure 30: (top) Scatter plot clean accuracy vs. mean adversarial accuracy (over all attacks and ϵ
values as described in subsection 3.2) on CIFAR-10. (bottom) Scatter plot clean accuracy vs. mean
common corruption accuracy (over all corruptions and severities) on CIFAR-10. The red data point
shows the best performing architecture according to clean accuracy on CIFAR-10. The orange data
points are neighboring architectures, where exactly one operation differs. The change of operation is
depicted in the legend. The number in brackets refers to the edge where the operation was changed.
See Figure 1 for cell connectivity and operations (1-6).

32

	Introduction
	Related Work
	Dataset Generation
	Architectures in NAS-Bench-201
	Robustness to Adversarial Attacks
	Robustness to Common Corruptions

	Use Cases
	Training-Free Measurements for Robustness
	NAS on Robustness
	Analyzing the Effect of Architecture Design on Robustness

	Conclusion
	Dataset
	NAS-Bench-201
	Dataset Gathering
	Dataset Structure, Distribution, and License
	Structure
	Confidence
	Confusion Matrix
	Correlations between Image Datasets
	Example image of corruptions in CIFAR-10-C
	Main Paper Figures for other Image Datasets
	CIFAR-100 Adversarial Attack Accuracies (Figure 2)
	ImageNet16-120 Adversarial Attack Accuracies (Figure 2)
	CIFAR-10-C Common Corruption Accuracies (Figure 4)
	CIFAR-100-C Common Corruption Accuracies (Figure 4)
	CIFAR-100 Adversarial Attack Correlations (Figure 3)
	ImageNet16-120 Adversarial Attack Correlations (Figure 3)
	CIFAR-100-C Common Corruption Correlations (Figure 5)

	Analysis
	Best Architectures
	Cell Kernel Parameter Count
	Gains and Losses by Single Changes

